Beyond Sealants: Designing Integrated Firestop Devices for MEP Penetrations

Introduction: Design Fire Protection In, Don't Patch It

applicable, listed in accordance with <u>UL 1479</u> / <u>ASTM E814</u> when installed per the listing.

How OEMs can build in intumescent penetration seals that can be tested and, where

In many projects, mechanical, electrical, and plumbing (MEP) penetrations are installed first

and firestopped later with field-applied caulks, wraps, paints, or putties. While factory application of those products is also possible, an alternative approach is gaining traction with

OEMs: integrate intumescent firestop functionality directly into the penetration device or fitting during product design.

This article explains how integrated intumescent solutions support UL and ASTM fire tests for

MEP penetrations, when they complement (not replace) field-applied methods, when and only

where the listing permits. The limits of a purely field-applied approach for MEP penetrations

<u>Field-applied firestop</u> systems are proven and widely used, but they can introduce variability

that OEM integration helps control:

installation details at each penetration.

adherence to the listing's details. Sequencing complexity. On both conventional and modular/prefab projects, penetrations may be concealed or hard to access by the time sealants are scheduled,

• Process variability. Results depend on installer technique, joint preparation, and

adding coordination overhead. Factory sealing is feasible but adds separate steps outside the core product design. • Documentation load. Inspectors must verify the exact listed system, materials, and

outcomes more predictable while keeping code compliance intact. Why integrate intumescent firestop materials into MEP

Integrated devices shift much of that work into product engineering and testing, making

- components? Intumescent materials expand under heat to help close annular spaces and limit fire and
- OEM component, you can: • **Deliver repeatable geometry at the point of penetration.** The intumescent is placed

smoke spread through penetrations. When the intumescent polymer is engineered into the

where it's needed, with controlled thickness and volume. • Support tested performance. Integrated assemblies can be designed and tested to UL

UL 263 / ASTM E119. • Reduce, but not entirely eliminate, dependence on field-applied products. In many listings, the integrated device serves as the primary firestop element, with sealants used

1479 / ASTM E814 for through-penetrations and coordinated with assembly ratings from

only where the listing calls for them. Standards that guide design and testing

For through-penetration firestop devices and materials, OEM engineers typically align with:

• <u>UL 1479</u> / <u>ASTM E814</u>: Fire tests for through-penetration firestops, including F-ratings

(fire endurance), T-ratings (temperature transmission), and L-ratings (air leakage for smoke control). • <u>UL 263 / ASTM E119</u>: Fire-resistance ratings for walls/floors that the penetration passes through.

• ICC & NFPA codes: Require tested and listed solutions matched to conditions of use.

- Always use the exact tested/listed system for the specific penetration and assembly; final
- acceptance rests with the <u>Authority Having Jurisdiction</u> (AHJ).

Designing OEM penetration devices with

integrated firestop functionality

Applications (MEP-focused)

expansion capacity and load-bearing char.

directly to the listing for easy inspection.

Defined geometry and section thickness.

Target expansion onset temperature.

Expansion pressure and char strength.

Compatibility with substrate materials.

Quick Design Checklist for Engineers:

Key design considerations:

Pipe collars and Electrical boxes and **Duct boots and similar** fittings: integrated sleeves:co-molded **HVAC** fittings: engineered interfaces that accept intumescent gaskets collars for plastic pipe or cavities. intumescent elements. penetrations.

retention. Choose a path that keeps the material where the listing requires it. 4. Material & substrate compatibility. Ensure the intumescent polymer bonds or locks in with your plastics or metals and does not impair normal service.

1. **Performance under fire exposure.** Expansion onset temperature, expansion

ratio/pressure, and char integrity drive results in <u>UL 1479</u> / <u>ASTM E814</u> testing.

2. Part geometry & section thickness: Thicker intumescent sections deliver more

3. **Integration method.** Co-molding, insert-molding, over-molding, or mechanical

5. Labeling & installation clarity. Mark the device and supply instructions that map

firestop function.

• Clear labeling and installation instructions aligned with tested listings.

SafePassage™ for OEM MEP penetration devices

<u>SafePassage™</u> is <u>Pyrophobic's</u> patented, tunable <u>intumescent thermoplastic</u> platform for OEM

grommets, or other through-penetration fittings, and tailored to meet <u>UL 1479</u> / <u>ASTM E814</u>

requirements for the intended use. It gives OEMs a design-stage path to consistent, testable

integration. Unlike brittle boards or purely field-applied sealants, <u>SafePassage™</u> can be

molded or extruded into the device itself, such as collars, sleeves, electrical enclosures,

Want to learn more

See the advantages of our

patented intumescent

thermoplastic.

Contact Us

Variability

inspection

Reliance on

Use in

Documentation &

additional products

prefab/modular

gaskets

firestop-ready.

inspection at set.

Conclusion & next steps

Talk to our engineers

Q1: What are intumescent penetration seals?

cables, supporting fire and smoke containment at rated assemblies.

acceptable air leakage. Always follow applicable ICC and NFPA codes.

Materials that expand under heat to help close annular spaces around pipes, ducts, and

Primarily <u>UL 1479</u> / <u>ASTM E814</u> for through-penetrations, coordinated with <u>UL 263 / ASTM</u>

<u>E119</u> for assembly ratings. Where smoke control matters, the UL 1479 L-rating defines

Q3: How can OEMs support compliance in prefab or conventional

Engineer the penetration device with integrated intumescent elements, test it as a system, and

supply clear markings/instructions. This reduces field variability and streamlines inspection.

about integrating

into your device.

Q2: Which standards apply?

construction?

SafePassage[™]

FAQ

about SafePassage™?

- Field-applied Aspect
- Engineered into the device Where the firestop is In the field or at the factory as a (instead of being applied in the created separate step field)

and access

accessories

workflow

Depends on installer technique

Each penetration must be

matched to a listed system

Often primary, may require

Feasible; adds a task to factory

Example: A fire-rated electrical box with intumescent

An OEM electrical box can integrate <u>SafePassage™</u> intumescent gaskets so that, when the

including relevant L-ratings where smoke control is required. By designing the intumescent

assembly is tested in a rated wall or floor, it meets <u>UL 1479</u> / <u>ASTM E814</u> requirements,

sealants/wraps/putties

Side-by-side: field-applied vs. integrated OEM device

Integrated OEM penetration

device (e.g., <u>SafePassage™</u>)

Geometry and placement

Device markings and instructions

May reduce or eliminate sealants

Penetration arrives with firestop

controlled by design

where listing permits

function included

map to listing

material into the box or cover, OEMs can reduce reliance on field-applied sealants, delivering a consistent, inspector-friendly solution. Looking for a solution to your fire safety challenge? We can help. Talk to Our Team of Specialists Where this helps on modular and conventional jobs

Both conventional and modular/prefab projects benefit from penetration devices that are born

• In modular work, integrated devices streamline factory workflows and simplify


In conventional jobs, they reduce field variability and documentation complexity.

Passive fire protection for penetrations has long been code-mandated. The opportunity now is

testing to <u>UL 1479</u> / <u>ASTM E814</u>, OEMs can deliver repeatable, inspector-friendly products that

to design it earlier. By integrating intumescent firestop materials into MEP components and

align with <u>UL 263 / ASTM E119</u> assemblies and modern construction methods.

Q4: What makes <u>SafePassage™</u> different? <u>SafePassage™</u> is a patented, tunable thermoplastic intumescent platform OEMs can mold or extrude into their components and design to meet <u>UL 1479</u> / <u>ASTM E814</u> firestop requirements. **Download a PDF** of this article.